Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.002
Filtrar
1.
Curr Biol ; 34(7): 1479-1491.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490203

RESUMO

NRT1.1, a nitrate transceptor, plays an important role in nitrate binding, sensing, and nitrate-dependent lateral root (LR) morphology. However, little is known about NRT1.1-mediated nitrate signaling transduction through plasma membrane (PM)-localized proteins. Through in-depth phosphoproteome profiling using membranes of Arabidopsis roots, we identified receptor kinase QSK1 and plasma membrane H+-ATPase AHA2 as potential downstream components of NRT1.1 signaling in a mild low-nitrate (LN)-dependent manner. QSK1, as a functional kinase and molecular link, physically interacts with NRT1.1 and AHA2 at LN and specifically phosphorylates AHA2 at S899. Importantly, we found that LN, not high nitrate (HN), induces formation of the NRT1.1-QSK1-AHA2 complex in order to repress the proton efflux into the apoplast by increased phosphorylation of AHA2 at S899. Loss of either NRT1.1 or QSK1 thus results in a higher T947/S899 phosphorylation ratio on AHA2, leading to enhanced pump activity and longer LRs under LN. Our results uncover a regulatory mechanism in which NRT1.1, under LN conditions, promotes coreceptor QSK1 phosphorylation and enhances the NRT1.1-QSK1 complex formation to transduce LN sensing to the PM H+-ATPase AHA2, controlling the phosphorylation ratio of activating and inhibitory phosphorylation sites on AHA2. This then results in altered proton pump activity, apoplast acidification, and regulation of NRT1.1-mediated LR growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Nitratos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
2.
PLoS One ; 19(1): e0296928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252645

RESUMO

Mutations in the solute linked carrier family 4 member 11 (SLC4A11) gene are associated with congenital hereditary endothelial dystrophy (CHED) and Fuchs corneal endothelial dystrophy type 4 (FECD4), both characterized by corneal endothelial cell (CEnC) dysfunction and/or cell loss leading to corneal edema and visual impairment. In this study, we characterize the impact of CHED-/FECD4-associated SLC4A11 mutations on CEnC function and SLC4A11 protein localization by generating and comparing human CEnC (hCEnC) lines expressing wild type SLC4A11 (SLC4A11WT) or mutant SLC4A11 harboring CHED-/FECD4-associated SLC4A11 mutations (SLC4A11MU). SLC4A11WT and SLC4A11MU hCEnC lines were generated to express either SLC4A11 variant 2 (V2WT and V2MU) or variant 3 (V3WT and V3MU), the two major variants expressed in ex vivo hCEnC. Functional assays were performed to assess cell barrier, proliferation, viability, migration, and NH3-induced membrane conductance. We demonstrate SLC4A11-/- and SLC4A11MU hCEnC lines exhibited increased migration rates, altered proliferation and decreased cell viability compared to SLC4A11WT hCEnC. Additionally, SLC4A11-/- hCEnC demonstrated decreased cell-substrate adhesion and membrane capacitances compared to SLC4A11WT hCEnC. Induction with 10mM NH4Cl led SLC4A11WT hCEnC to depolarize; conversely, SLC4A11-/- hCEnC hyperpolarized and the majority of SLC4A11MU hCEnC either hyperpolarized or had minimal membrane potential changes following NH4Cl induction. Immunostaining of primary hCEnC and SLC4A11WT hCEnC lines for SLC4A11 demonstrated predominately plasma membrane staining with poor or partial colocalization with mitochondrial marker COX4 within a subset of punctate subcellular structures. Overall, our findings suggest CHED-associated SLC4A11 mutations likely lead to hCEnC dysfunction, and ultimately CHED, by interfering with cell migration, proliferation, viability, membrane conductance, barrier function, and/or cell surface localization of the SLC4A11 protein in hCEnC. Additionally, based on their similar subcellular localization and exhibiting similar cell functional profiles, protein isoforms encoded by SLC4A11 variant 2 and variant 3 likely have highly overlapping functional roles in hCEnC.


Assuntos
Proteínas de Transporte de Ânions , Antiporters , Distrofias Hereditárias da Córnea , Distrofia Endotelial de Fuchs , Humanos , Proteínas de Transporte de Ânions/genética , Antiporters/genética , Transtornos Cromossômicos , Distrofias Hereditárias da Córnea/genética , Células Endoteliais , Distrofia Endotelial de Fuchs/genética , Mutação , Proteínas SLC4A
3.
Handb Exp Pharmacol ; 283: 319-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37947907

RESUMO

Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.


Assuntos
Proteínas de Transporte de Ânions , Humanos , Transportadores de Sulfato/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/metabolismo , Ânions/metabolismo , Transporte Biológico
4.
Mol Cell Proteomics ; 23(1): 100685, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000714

RESUMO

Environment pH (pHe) is a key parameter dictating a surfeit of conditions critical to plant survival and fitness. To elucidate the mechanisms that recalibrate cytoplasmic and apoplastic pH homeostasis, we conducted a comprehensive proteomic/phosphoproteomic inventory of plants subjected to transient exposure to acidic or alkaline pH, an approach that covered the majority of protein-coding genes of the reference plant Arabidopsis thaliana. Our survey revealed a large set-of so far undocumented pHe-dependent phospho-sites, indicative of extensive post-translational regulation of proteins involved in the acclimation to pHe. Changes in pHe altered both electrogenic H+ pumping via P-type ATPases and H+/anion co-transport processes, putatively leading to altered net trans-plasma membrane translocation of H+ ions. In pH 7.5 plants, the transport (but not the assimilation) of nitrogen via NRT2-type nitrate and AMT1-type ammonium transporters was induced, conceivably to increase the cytosolic H+ concentration. Exposure to both acidic and alkaline pH resulted in a marked repression of primary root elongation. No such cessation was observed in nrt2.1 mutants. Alkaline pH decreased the number of root hairs in the wild type but not in nrt2.1 plants, supporting a role of NRT2.1 in developmental signaling. Sequestration of iron into the vacuole via alterations in protein abundance of the vacuolar iron transporter VTL5 was inversely regulated in response to high and low pHe, presumptively in anticipation of associated changes in iron availability. A pH-dependent phospho-switch was also observed for the ABC transporter PDR7, suggesting changes in activity and, possibly, substrate specificity. Unexpectedly, the effect of pHe was not restricted to roots and provoked pronounced changes in the shoot proteome. In both roots and shoots, the plant-specific TPLATE complex components AtEH1 and AtEH2-essential for clathrin-mediated endocytosis-were differentially phosphorylated at multiple sites in response to pHe, indicating that the endocytic cargo protein trafficking is orchestrated by pHe.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosforilação , Proteômica , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Plantas/metabolismo , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
5.
Pflugers Arch ; 476(4): 533-543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110744

RESUMO

Pendrin (SLC26A4) is an anion exchanger from the SLC26 transporter family which is mutated in human patients affected by Pendred syndrome, an autosomal recessive disease characterized by sensoneurinal deafness and hypothyroidism. Pendrin is also expressed in the kidney where it mediates the exchange of internal HCO3- for external Cl- at the apical surface of renal type B and non-A non-B-intercalated cells. Studies using pendrin knockout mice have first revealed that pendrin is essential for renal base excretion. However, subsequent studies have demonstrated that pendrin also controls chloride absorption by the distal nephron and that this mechanism is critical for renal NaCl balance. Furthermore, pendrin has been shown to control vascular volume and ultimately blood pressure. This review summarizes the current knowledge about how pendrin is linking renal acid-base regulation to blood pressure control.


Assuntos
Rim , Néfrons , Animais , Camundongos , Humanos , Pressão Sanguínea/fisiologia , Transportadores de Sulfato , Rim/metabolismo , Néfrons/metabolismo , Cloreto de Sódio , Cloretos/metabolismo , Proteínas de Transporte de Ânions/genética
7.
J Agric Food Chem ; 71(50): 19958-19969, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38085756

RESUMO

Nitrogen fertilization can promote rice yield but decrease resistance to sheath blight (ShB). In this study, the nitrate transporter 1.1b (nrt1.1b) mutant that exhibited less susceptibility to ShB but without compromising yield under NH4+ fertilization was screened. NRT1.1B's regulation of ShB resistance was independent of the total nitrogen concentration in rice under NH4+ conditions. In nrt1.1b mutant plants, the NH4+ application modulated auxin signaling, chlorophyll content, and phosphate signaling to promote ShB resistance. Furthermore, the findings indicated that NRT1.1B negatively regulated ShB resistance by positively modulating the expression of H+-ATPase gene OSA3 and phosphate transport gene PT8. The mutation of OSA3 and PT8 promoted ShB resistance by increasing the apoplastic pH in rice. Our study identified the ShB resistance mutant nrt1.1b, which maintained normal nitrogen use efficiency without compromising yield.


Assuntos
Transportadores de Nitrato , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Mutação , Nitrogênio/metabolismo , Fosfatos/metabolismo , Fertilização , Nitratos/farmacologia , Nitratos/metabolismo , Regulação da Expressão Gênica de Plantas
8.
BMC Plant Biol ; 23(1): 502, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853334

RESUMO

BACKGROUND: For cereal crop breeding, it is meaningful to improve utilization efficiency (NUE) under low nitrogen (LN) levels while maintaining crop yield. OsCBL1-knockdown (OsCBL1-KD) plants exhibited increased nitrogen accumulation and NUE in the field of low N level. RESULTS: OsCBL1-knockdown (OsCBL1-KD) in rice increased the expression of a nitrate transporter gene OsNRT2.2. In addition, the expression of OsNRT2.2, was suppressed by OsCCA1, a negative regulator, which could directly bind to the MYB-binding elements (EE) in the region of OsNRT2.2 promoter. The OsCCA1 expression was found to be down-regulated in OsCBL1-KD plants. At the low Nitrogen (N) level field, the OsCBL1-KD plants exhibited a substantial accumulation of content and higher NUE, and their actual biomass remained approximately as the same as that of the wild type. CONCLUSION: These results indicated that down-regulation of OsCBL1 expression could upregulate the expression of OsNRT2.2 by suppressing the expression of OsCCA1and then increasing the NUE of OsCBL1-KD plants under low nitrogen availability.


Assuntos
Nitrogênio , Oryza , Nitrogênio/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Nitratos/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal
9.
BMC Genomics ; 24(1): 633, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872493

RESUMO

Nitrate is a primary nitrogen source for plant growth, and previous studies have indicated a correlation between nitrogen and browning. Nitrate transporters (NRTs) are crucial in nitrate allocation. Here, we utilized a genome-wide approach to identify and analyze the expression pattern of 74 potential GbNRTs under nitrate treatments during calluses browning in Ginkgo, including 68 NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) (NPF), 4 NRT2 and 2 NRT3. Conserved domains, motifs, phylogeny, and cis-acting elements (CREs) were analyzed to demonstrate the evolutionary conservation and functional diversity of GbNRTs. Our analysis showed that the NPF family was divided into eight branches, with the GbNPF2 and GbNPF6 subfamilies split into three groups. Each GbNRT contained 108-214 CREs of 19-36 types, especially with binding sites of auxin and transcription factors v-myb avian myeloblastosis viral oncogene homolog (MYB) and basic helix-loop-helix (bHLH). The E1X1X2E2R motif had significant variations in GbNPFs, indicating changes in the potential dynamic proton transporting ability. The expression profiles of GbNRTs indicated that they may function in regulating nitrate uptake and modulating the signaling of auxin and polyphenols biosynthesis, thereby affecting browning in Ginkgo callus induction. These findings provide a better understanding of the role of NRTs during NO3- uptake and utilization in vitro culture, which is crucial to prevent browning and develop an efficient regeneration and suspension production system in Ginkgo.


Assuntos
Nitratos , Proteínas de Plantas , Nitratos/farmacologia , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ginkgo biloba/genética , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/metabolismo , Transportadores de Nitrato , Nitrogênio/metabolismo , Ácidos Indolacéticos , Regulação da Expressão Gênica de Plantas , Filogenia
10.
Transl Vis Sci Technol ; 12(10): 1, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787991

RESUMO

Purpose: The purpose of this study was to explore the pathogenicity and function of two novel SLC4A11 variants associated with congenital hereditary endothelial dystrophy (CHED) and to study the function of a SLC4A11 (K263R) mutant in vitro. Methods: Ophthalmic examinations were performed on a 28-year-old male proband with CHED. Whole-exome and Sanger sequencing were applied for mutation screening. Bioinformatics and pathogenicity analysis were performed. HEK293T cells were transfected with the plasmids of empty vector, wild-type SLC4A11, and SLC4A11 (K263R) mutant. The transfected cells were treated with SkQ1. Oxygen consumption, cellular reactive oxygen species (ROS) level, mitochondrial membrane potential, and apoptosis rate were measured. Results: The proband had poor visual acuity with nystagmus since childhood. Corneal foggy opacity was evident in both eyes. Two novel SLC4A11 variants were detected. Sanger sequencing showed that the proband's father and sister carried c.1464-1G>T variant, and the proband's mother and sister carried c.788A>G (p.Lys263Arg) variant. Based on the American College of Medical Genetics (ACMG) guidelines, SLC4A11 c.1464-1G>T was pathogenic, whereas c.788A>G, p.K263R was a variant of undetermined significance. In vitro, SLC4A11 (K263R) variant increased ROS level and apoptosis rate. Decrease in mitochondrial membrane potential and oxygen consumption rate were remarkable. Furthermore, SkQ1 decreased ROS levels and apoptosis rate but increased mitochondrial membrane potential in the transfected cells. Conclusions: Two novel heterozygous pathogenic variants of the SLC4A11 gene were identified in a family with CHED. The missense variant SLC4A11 (K263R) caused mitochondrial dysfunction and increased apoptosis in mutant transfected cells. In addition, SkQ1 presented a protective effect suggesting the anti-oxidant might be a novel therapeutic drug. Translational Relevance: This study verified the pathogenicity of 2 novel variants in the SLC4A11 gene in a CHED family and found an anti-oxidant might be a new drug.


Assuntos
Antioxidantes , Distrofias Hereditárias da Córnea , Adulto , Criança , Humanos , Masculino , Proteínas de Transporte de Ânions/genética , Antiporters/genética , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/patologia , Células HEK293 , Espécies Reativas de Oxigênio , Virulência
11.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833854

RESUMO

To effectively adapt to changing environments, plants must maintain a delicate balance between growth and resistance or tolerance to various stresses. Nitrate, a significant inorganic nitrogen source in soils, not only acts as an essential nutrient but also functions as a critical signaling molecule that regulates multiple aspects of plant growth and development. In recent years, substantial advancements have been made in understanding nitrate sensing, calcium-dependent nitrate signal transmission, and nitrate-induced transcriptional cascades. Mounting evidence suggests that the primary response to nitrate is influenced by environmental conditions, while nitrate availability plays a pivotal role in stress tolerance responses. Therefore, this review aims to provide an overview of the transcriptional and post-transcriptional regulation of key components in the nitrate signaling pathway, namely, NRT1.1, NLP7, and CIPK23, under abiotic stresses. Additionally, we discuss the specificity of nitrate sensing and signaling as well as the involvement of epigenetic regulators. A comprehensive understanding of the integration between nitrate signaling transduction and abiotic stress responses is crucial for developing future crops with enhanced nitrogen-use efficiency and heightened resilience.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Transdução de Sinais , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Gene ; 888: 147797, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37708922

RESUMO

NITRATE TRANSPORTER 1 (NRT1)/PEPTIDETRANSPORTER (PTR) family (NPF) plays a significant role in nitrate transport. However, little is known about the NPF genes in sweet cherry. In this study, a total of 60 PaNPF genes in sweet cherry were identified by bioinformatics, which were divided into 8 families. Transcriptomic analysis showed that most PaNPF genes responded to both low and high nitrate conditions, especially PaNPF5.5, which was highly up-regulated under high nitrate condition. Molecular analysis showed that PaNPF5.5 was a transporter localized to the cell membrane. Further functional studies found that PaNPF5.5 overexpression promoted the growth of sweet cherry rootstock Gisela 6 by accelerating the nitrogen absorption process under high nitrate environment. Taken together, we believe that PaNPF5.5 plays an important role in regulating the transport of nitrate at high nitrate conditions, and provides a promising method for improving nitrate absorption efficiency at nitrogen excess environment.


Assuntos
Transportadores de Nitrato , Prunus avium , Nitratos/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
J Chem Inf Model ; 63(16): 5142-5152, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37585651

RESUMO

NarK nitrate/nitrite antiporter imports nitrate (a mineral form of the essential element nitrogen) into the cell and exports nitrite (a metabolite that can be toxic in high concentrations) out of the cell. However, many details about its operational mechanism remain poorly understood. In this work, we performed steered molecular dynamics simulations of anion translocations and quantum-chemistry model calculations of the binding sites to study the wild-type NarK protein and its R89K mutant. Our results shed light on the importance of the two strictly conserved binding-site arginine residues (R89 and R305) and two glycine-rich signature motifs (G164-M176 and G408-F419) in anion movement through the pore. We also observe conformational changes of the protein during anion migration. For the R89K mutant, our quantum calculations reveal a competition for a proton between the anion (especially nitrite) and lysine, which can potentially slow down or even trap the anion in the pore. Our findings provide a possible explanation for the striking experimental finding that the arginine-to-lysine mutation, despite preserving the charge, impedes or abolishes anion transport in such mutants of NarK and other similar nitrate/nitrite exchangers.


Assuntos
Proteínas de Transporte de Ânions , Nitritos/metabolismo , Nitratos/metabolismo , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Mutação
14.
Proc Natl Acad Sci U S A ; 120(35): e2300446120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37611056

RESUMO

Nitrate distribution in soils is often heterogeneous. Plants have adapted to this by modifying their root system architecture (RSA). Previous studies showed that NITRATE-TRANSPORTER1.1 (NRT1.1), which also transports auxin, helps inhibit lateral root primordia (LRP) emergence in nitrate-poor patches, by preferentially transporting auxin away from the LRP. In this study, we identified the regulatory system for this response involving the transcription factor (TF), SENSITIVE-TO-PROTON-RHIZOTOXICITY1 (STOP1), which is accumulated in the nuclei of LRP cells under nitrate deficiency and directly regulates Arabidopsis NRT1.1 expression. Mutations in STOP1 mimic the root phenotype of the loss-of-function NRT1.1 mutant under nitrate deficiency, compared to wild-type plants, including increased LR growth and higher DR5promoter activity (i.e., higher LRP auxin signaling/activity). Nitrate deficiency-induced LR growth inhibition was almost completely reversed when STOP1 and the TF, TEOSINTE-BRANCHED1,-CYCLOIDEA,-PCF-DOMAIN-FAMILY-PROTEIN20 (TCP20), a known activator of NRT1.1 expression, were both mutated. Thus, the STOP1-TCP20 system is required for activation of NRT1.1 expression under nitrate deficiency, leading to reduced LR growth in nitrate-poor regions. We found this STOP1-mediated system is more active as growth media becomes more acidic, which correlates with reductions in soil nitrate as the soil pH becomes more acidic. STOP1 has been shown to be involved in RSA modifications in response to phosphate deficiency and increased potassium uptake, hence, our findings indicate that root growth regulation in response to low availability of the major fertilizer nutrients, nitrogen, phosphorus and potassium, all involve STOP1, which may allow plants to maintain appropriate root growth under the complex and varying soil distribution of nutrients.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nitratos , Fatores de Transcrição/genética , Arabidopsis/genética , Transporte Biológico , Ácidos Indolacéticos , Proteínas de Plantas , Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/genética
15.
Plant Physiol ; 193(4): 2865-2879, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37595050

RESUMO

Arabidopsis (Arabidopsis thaliana) high-affinity NITRATE TRANSPORTER2.1 (NRT2.1) plays a dominant role in the uptake of nitrate, the most important nitrogen (N) source for most terrestrial plants. The nitrate-inducible expression of NRT2.1 is regulated by NIN-LIKE PROTEIN (NLP) family transcriptional activators and NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR1 (NIGT1) family transcriptional repressors. Phosphorus (P) availability also affects the expression of NRT2.1 because the PHOSPHATE STARVATION RESPONSE1 transcriptional activator activates NIGT1 genes in P-deficient environments. Here, we show a biology-based mathematical understanding of the complex regulation of NRT2.1 expression by multiple transcription factors using 2 different approaches: a microplate-based assay for the real-time measurement of temporal changes in NRT2.1 promoter activity under different nutritional conditions, and an ordinary differential equation (ODE)-based mathematical modeling of the NLP- and NIGT1-regulated expression patterns of NRT2.1. Both approaches consistently reveal that NIGT1 stabilizes the amplitude of NRT2.1 expression under a wide range of nitrate concentrations. Furthermore, the ODE model suggests that parameters such as the synthesis rate of NIGT1 mRNA and NIGT1 proteins and the affinity of NIGT1 proteins for the NRT2.1 promoter substantially influence the temporal expression patterns of NRT2.1 in response to nitrate. These results suggest that the NLP-NIGT1 feedforward loop allows a precise control of nitrate uptake. Hence, this study paves the way for understanding the complex regulation of nutrient acquisition in plants, thus facilitating engineered nutrient uptake and plant response patterns using synthetic biology approaches.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2743-2761, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37584129

RESUMO

Nitrate is the main form of inorganic nitrogen that crop absorbs, and nitrate transporter 2 (NRT2) is a high affinity transporter using nitrate as a specific substrate. When the available nitrate is limited, the high affinity transport systems are activated and play an important role in the process of nitrate absorption and transport. Most NRT2 cannot transport nitrates alone and require the assistance of a helper protein belonging to nitrate assimilation related family (NAR2) to complete the absorption or transport of nitrates. Crop nitrogen utilization efficiency is affected by environmental conditions, and there are differences between varieties, so it is of great significance to develop varieties with high nitrogen utilization efficiency. Sorghum bicolor has high stress tolerance and is more efficient in soil nitrogen uptake and utilization. The S. bicolor genome database was scanned to systematically analyze the gene structure, chromosomal localization, physicochemical properties, secondary structure and transmembrane domain, signal peptide and subcellular localization, promoter region cis-acting elements, phylogenetic evolution, single nucleotide polymorphism (SNP) recognition and annotation, and selection pressure of the gene family members. Through bioinformatics analysis, 5 NRT2 gene members (designated as SbNRT2-1a, SbNRT2-1b, SbNRT2-2, SbNRT2-3, and SbNRT2-4) and 2 NAR2 gene members (designated as SbNRT3-1 and SbNRT3-2) were identified, the number of which was less than that of foxtail millet. SbNRT2/3 were distributed on 3 chromosomes, and could be divided into four subfamilies. The genetic structure of the same subfamilies was highly similar. The average value of SbNRT2/3 hydrophilicity was positive, indicating that they were all hydrophobic proteins, whereas α-helix and random coil accounted for more than 70% of the total secondary structure. Subcellular localization occurred on plasma membrane, where SbNRT2 proteins did not contain signal peptides, but SbNRT3 proteins contained signal peptides. Further analysis revealed that the number of transmembrane domains of the SbNRT2s family members was greater than 10, while that of the SbNRT3s were 2. There was a close collinearity between NRT2/3s of S. bicolor and Zea mays. Protein domains analysis showed the presence of MFS_1 and NAR2 protein domains, which supported executing high affinity nitrate transport. Phylogenetic tree analysis showed that SbNRT2/3 were more closely related to those of Z. mays and Setaria italic. Analysis of gene promoter cis-acting elements indicated that the promoter region of SbNRT2/3 had several plant hormones and stress response elements, which might respond to growth and environmental cues. Gene expression heat map showed that SbNRT2-3 and SbNRT3-1 were induced by nitrate in the root and stem, respectively, and SbNRT2-4 and SbNRT2-3 were induced by low nitrogen in the root and stem. Non-synonymous SNP variants were found in SbNRT2-4 and SbNRT2-1a. Selection pressure analysis showed that the SbNRT2/3 were subject to purification and selection during evolution. The expression of SbNRT2/3 gene and the effect of aphid infection were consistent with the expression analysis results of genes in different tissues, and SbNRT2-1b and SbNRT3-1 were significantly expressed in the roots of aphid lines 5-27sug, and the expression levels of SbNRT2-3, SbNRT2-4 and SbNRT3-2 were significantly reduced in sorghum aphid infested leaves. Overall, genome-wide identification, expression and DNA variation analysis of NRT2/3 gene family of Sorghum bicolor provided a basis for elucidating the high efficiency of sorghum in nitrogen utilization.


Assuntos
Transportadores de Nitrato , Sorghum , Nitratos/metabolismo , Sorghum/genética , Sorghum/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Filogenia , Sinais Direcionadores de Proteínas/genética , Nitrogênio/metabolismo , DNA , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(34): e2307355120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552762

RESUMO

Hearing loss is highly heterogeneous, but one common form involves a failure to maintain the local ionic environment of the sensory hair cells reflected in a reduced endocochlear potential. We used a genetic approach to ask whether this type of pathology can be reversed, using the Spns2tm1a mouse mutant known to show this defect. By activating Spns2 gene transcription at different ages after the onset of hearing loss, we found that an existing auditory impairment can be reversed to give close to normal thresholds for an auditory brainstem response (ABR), at least at low to mid stimulus frequencies. Delaying the activation of Spns2 led to less effective recovery of ABR thresholds, suggesting that there is a critical period for intervention. Early activation of Spns2 not only led to improvement in auditory function but also to protection of sensory hair cells from secondary degeneration. The genetic approach we have used to establish that this type of hearing loss is in principle reversible could be extended to many other diseases using available mouse resources.


Assuntos
Proteínas de Transporte de Ânions , Terapia Genética , Perda Auditiva , Animais , Camundongos , Perda Auditiva/genética , Perda Auditiva/patologia , Perda Auditiva/terapia , Proteínas de Transporte de Ânions/genética , Ativação Transcricional , Potenciais Microfônicos da Cóclea , Células Ciliadas Auditivas/patologia
18.
Mol Cell ; 83(15): 2739-2752.e5, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37499662

RESUMO

Solute carrier spinster homolog 2 (SPNS2), one of only four known major facilitator superfamily (MFS) lysolipid transporters in humans, exports sphingosine-1-phosphate (S1P) across cell membranes. Here, we explore the synergistic effects of lipid binding and conformational dynamics on SPNS2's transport mechanism. Using mass spectrometry, we discovered that SPNS2 interacts preferentially with PI(4,5)P2. Together with functional studies and molecular dynamics (MD) simulations, we identified potential PI(4,5)P2 binding sites. Mutagenesis of proposed lipid binding sites and inhibition of PI(4,5)P2 synthesis reduce S1P transport, whereas the absence of the N terminus renders the transporter essentially inactive. Probing the conformational dynamics of SPNS2, we show how synergistic binding of PI(4,5)P2 and S1P facilitates transport, increases dynamics of the extracellular gate, and stabilizes the intracellular gate. Given that SPNS2 transports a key signaling lipid, our results have implications for therapeutic targeting and also illustrate a regulatory mechanism for MFS transporters.


Assuntos
Lisofosfolipídeos , Esfingosina , Humanos , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo
19.
New Phytol ; 240(1): 338-353, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37424317

RESUMO

Identifying new nitrate regulatory genes and illustrating their mechanisms in modulating nitrate signaling are of great significance for achieving the high yield and nitrogen use efficiency (NUE) of crops. Here, we screened a mutant with defects in nitrate response and mapped the mutation to the gene eIF4E1 in Arabidopsis. Our results showed that eIF4E1 regulated nitrate signaling and metabolism. Ribo-seq and polysome profiling analysis revealed that eIF4E1 modulated the amount of some nitrogen (N)-related mRNAs being translated, especially the mRNA of NRT1.1 was reduced in the eif4e1 mutant. RNA-Seq results enriched some N-related genes, supporting that eIF4E1 is involved in nitrate regulation. The genetic analysis indicated that eIF4E1 worked upstream of NRT1.1 in nitrate signaling. In addition, an eIF4E1-interacting protein GEMIN2 was identified and found to be involved in nitrate signaling. Further investigation showed that overexpression of eIF4E1 promoted plant growth and enhanced yield and NUE. These results demonstrate that eIF4E1 regulates nitrate signaling by modulating NRT1.1 at both translational and transcriptional levels, laying the foundation for future research on the regulation of mineral nutrition at the translational level.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas
20.
Bone ; 175: 116838, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454964

RESUMO

Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by pathogenic variants in the SLC26A2 gene encoding for a cell membrane sulfate/chloride antiporter crucial for sulfate uptake and glycosaminoglycan (GAG) sulfation. Research on a DTD animal model has suggested possible pharmacological treatment approaches. In view of future clinical trials, the identification of non-invasive biomarkers is crucial to assess the efficacy of treatments. Urinary GAG composition has been analyzed in several metabolic disorders including mucopolysaccharidoses. Moreover, the N-terminal fragment of collagen X, known as collagen X marker (CXM), is considered a real-time marker of endochondral ossification and growth velocity and was studied in individuals with achondroplasia and osteogenesis imperfecta. In this work, urinary GAG sulfation and blood CXM levels were investigated as potential biomarkers for individuals affected by DTD. Chondroitin sulfate disaccharide analysis was performed on GAGs isolated from urine by HPLC after GAG digestion with chondroitinase ABC and ACII, while CXM was assessed in dried blood spots. Results from DTD patients were compared with an age-matched control population. Undersulfation of urinary GAGs was observed in DTD patients with some relationship to the clinical severity and underlying SLC26A2 variants. Lower than normal CXM levels were observed in most patients, even if the marker did not show a clear pattern in our small patient cohort because CXM values are highly dependent on age, gender and growth velocity. In summary, both non-invasive biomarkers are promising assays targeting various aspects of the disorder including overall metabolism of sulfated GAGs and endochondral ossification.


Assuntos
Acondroplasia , Proteínas de Transporte de Ânions , Animais , Proteínas de Transporte de Ânions/genética , Transportadores de Sulfato , Glicosaminoglicanos , Biomarcadores , Colágeno/metabolismo , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...